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Note: Homework 3 is on webpage. Due Nov 6.



Probability basics
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• A probabilistic setting (finite case) is defined by a sample space Ω and 
a probability distribution 𝜈: Ω → [0,1] such that σ𝜔∈Ω 𝜈 𝜔 = 1. 

• An event 𝐴 is a subset of the sample space, and we define ℙ 𝐴 = σ𝜔∈𝐴 𝜈 𝜔 .  The 
elements 𝜔 ∈ Ω are called elementary events and associated with their singleton sets.

• A real-valued random variable (R.V.) 𝑋 is a function 𝑋: Ω → ℝ (can also talk about vector-
valued R.V.s, etc).

➢E.g., roll two dice.  Let 𝑋1 = value of die #1, 𝑋2 = value of die #2, 𝑋 = 𝑋1 + 𝑋2.

• Often convenient to go back and forth between events and R.V.s.

➢Given R.V. 𝑋 and a value 𝑏, define event “𝑋 = 𝑏” as {𝜔: 𝑋 𝜔 = 𝑏}.

➢Given event 𝐴, define indicator R.V. 𝑋 𝜔 = ቊ
1 𝑖𝑓 𝜔 ∈ 𝐴
0 𝑖𝑓 𝜔 ∉ 𝐴
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E.g., roll a die, Ω = {1,2,3,4,5,6}



Probability basics

• The expectation 𝔼[𝑋] of a random variable 𝑋 is σ𝜔∈Ω 𝜈 𝜔 𝑋 𝜔 .

➢In other words, it is the probability-weighted average value.  E.g., if 𝑋1 is the R.V. 
for the roll of a die, then 𝔼 𝑋1 = 3.5.

• Often it is convenient to group elementary events by the value of 𝑋 giving us 
𝔼 𝑋 = σ𝑎 ℙ 𝑋 = 𝑎 ⋅ 𝑎.

• An extremely useful property of expectation is that it is a linear transformation.  
In particular, 𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼[𝑌].
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Linearity of Expectation



Linearity of Expectation: Example
Card Shuffling:

• Unwrap a deck of 𝑛 cards and shuffle until ordering is completely random.

• What is expected number of cards that end up in the same position as they started?

• What do we get for 𝑛 = 1? 𝑛 = 2? General 𝑛?

Answer: 1.  Proof:

• Define 𝑋𝑖  to be the indicator R.V. for the event that card 𝑖 ends up in position 𝑖. 

• Let 𝑋 = 𝑋1 + ⋯ + 𝑋𝑛 be the number of cards that end in their starting position.

• We know 𝔼 𝑋𝑖 = 1/𝑛, so by linearity of expectation, 𝔼 𝑋 = 1.



Conditioning
Conditioning on an event 𝐴 is equivalent to restricting the probability space to 𝐴.

• Define 𝜈𝐴 𝜔 = ቊ
𝜈 𝜔 /ℙ 𝐴  𝑖𝑓 𝑤 ∈ 𝐴
 0 𝑖𝑓 𝑤 ∉ 𝐴

• ℙ 𝐵 𝐴 =
ℙ 𝐴∧𝐵

ℙ 𝐴
= σ𝜔∈𝐴∩𝐵

𝜈 𝜔

ℙ 𝐴
= σ𝜔∈𝐴∩𝐵 𝜈𝐴 𝜔 .

• For an R.V. 𝑋 and event 𝐴, define 𝔼 𝑋 𝐴 = σ𝜔∈𝐴 𝜈𝐴 𝜔 ⋅ 𝑋 𝜔 .

• For any partition of Ω into 𝐴1, 𝐴2, …, we can rewrite 𝔼[𝑋] as:

𝔼 𝑋 = 

𝑖



𝜔∈𝐴𝑖

𝜈 𝜔 𝑋 𝜔 = 

𝑖

ℙ 𝐴𝑖 𝔼 𝑋 𝐴𝑖] 

“probability of 𝜔 conditioned on A”



Example: Random walk stock market
Imagine there is a stock that each day goes up or down by $1 with equal probability 
(unless it hits $0, in which case it stays there forever).

You begin with $m.  At the start of each day you can buy or sell as much as you like.  At 
the end of the year, you must cash out. What strategy maximizes your expected gain?

Answer: it doesn’t matter.  For any strategy, your expected gain is $0.

• Define 𝑋𝑡 to be the gain of your algorithm on day 𝑡.  Let 𝑋 = X1 + ⋯ + X365 be your 
gain at the end of the year.

• By Linearity of expectation, 𝔼 𝑋 = 𝔼 𝑋1 + ⋯ + 𝔼 𝑋365 .  So, what is 𝔼[𝑋𝑡]?

• Let 𝐴𝑡𝑖  be the event that you own 𝑖 shares on day 𝑡.  For all 𝑖, we have 𝔼 𝑋𝑡 𝐴𝑡𝑖 = 0.  
So, 𝔼 𝑋𝑡 = 0.



Independence

Two events 𝐴 and 𝐵 are independent if ℙ 𝐴 ∧ 𝐵 = ℙ 𝐴 ⋅ ℙ(𝐵). 

• If they have nonzero probability, can write as ℙ 𝐴 𝐵 = ℙ(𝐴), or ℙ 𝐵 𝐴 = ℙ 𝐵 .

Two random variables 𝑋, 𝑌 are independent if the events “𝑋 = 𝑥” and “𝑌 = 𝑦” are 
independent for all 𝑥, 𝑦.

𝑘 events 𝐴1, … , 𝐴𝑘  are independent if for all 𝑆 ⊆ {1, … , 𝑘},  ℙ 𝑖∈𝑆ٿ 𝐴𝑖 = ς𝑖∈𝑆 ℙ(𝐴𝑖). 

𝑘 R.V.s 𝑋1, … , 𝑋𝑘 are independent if for all 𝑥1, … , 𝑥𝑘 the events 𝑋𝑖 = 𝑥𝑖 are independent

• Also called mutual independence.

• Weaker condition: pairwise independence (above holds for all 𝑆 ≤ 2).

Can you think of 3 events or 3 RVs that are pairwise independent but not mutually indep?



Independence

We saw that for any two R.V.’s 𝑋 and 𝑌, we have 𝔼 𝑋 + 𝑌 = 𝔼 𝑋 + 𝔼[𝑌], regardless 
of whether 𝑋 and 𝑌 are independent.

Can you think of two R.V.’s 𝑋 and 𝑌 where 𝔼 𝑋 ⋅ 𝑌 ≠ 𝔼 𝑋 ⋅ 𝔼[𝑌]?

But we do get 𝔼 𝑋 ⋅ 𝑌 = 𝔼 𝑋 ⋅ 𝔼[𝑌] when 𝑋 and 𝑌 are independent.



Independence



Universal hashing
• A hash function is a function ℎ: 𝑈 → {0, … , 𝑀 − 1} where 𝑈 is an input space of size 

typically much larger than 𝑀.  E.g., hashing strings to the range 1,…,10000.

• One property you want is that for the subset 𝑆 ⊆ 𝑈 of inputs you actually care about 
(e.g., English words) you don’t get too many collisions, especially when 𝑆 ≈ 𝑀.

• A convenient way to construct such a function is using randomization. (Randomization 
in the choice of h.  The function h itself is deterministic.)

• For all 𝑠 ∈ 𝑈, 𝑋𝑠 = ℎ 𝑠  is a random variable

• Asking for these to be mutually independent would be too much (ℎ would essentially 
have to be a huge lookup table).

• But pairwise independence will be sufficient, and implementable with simple ℎ’s.



Universal hashing



Constructing a universal hash function
One approach:

• Say inputs are 𝑢 bits long ( 𝑈 = 2𝑢), table size 𝑀 = 2𝑏.

• Choose ℎ to be a random linear transformation from 𝔽2
𝑢 to 𝔽2

𝑏 (i.e., a random 𝑏 × 𝑢 
matrix over 𝔽2).



Bernoulli and Binomial Random Variables

A Bernoulli(p) R.V. takes value 1 with probability p, and 0 with probability 1-p.

(Will also use the common terminology of “tossing a coin of bias p”.)

Let 𝑋1, … , 𝑋𝑛 be 𝑛 independent (iid) Bernoulli(p) random variables and let 
𝑍𝑛 = 𝑋1 + ⋯ + 𝑋𝑛.  𝑍𝑛 is called a Binomial(n,p) random variable.

➢𝔼 𝑍𝑛 = 𝑝𝑛.

➢ℙ 𝑍𝑛 = 𝑘 =
𝑛
𝑘

𝑝𝑘 1 − 𝑝 𝑛−𝑘.



Infinite Bernoulli sequence and Geometric R.V.s

Consider an infinite sequence of iid Bernoulli(p) random variables 𝑋1, 𝑋2, 𝑋3, ….

Let 𝑌 be the index of the first 𝑋𝑖 = 1 (i.e., the number of coin tosses until the first heads).

Then 𝑌 is a Geometric(p) R.V., with ℙ 𝑌 = 𝑖 = 𝑝 ⋅ 1 − 𝑝 𝑖−1.

To calculate 𝔼[𝑌], can use: 𝔼 𝑌 = 𝔼 𝑌 𝑋1 = 1] ⋅ ℙ 𝑋1 = 1 + 𝔼 𝑌 𝑋1 = 0 ⋅ ℙ[𝑋1 = 0].

• First term is 1 ⋅ 𝑝 = 𝑝.

• Second term is 1 + 𝔼 𝑌 ⋅ (1 − 𝑝).

• Overall, get 𝑝 ⋅ 𝔼 𝑌 = 𝑝 + (1 − 𝑝), so 𝔼 𝑌 = 1/𝑝.



Homework 3 is now available

Due Nov 6 (in 1 week)
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